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Mathematical Motivation for Quantum Mechanics

∆Q∆P ≥ ~
2

⇐= QP 6= PQ (i.e. [Q,P] = QP − PQ 6= 0)

Randomness is inherent

If x = α1e1 + ...+ αnen, then measurement “reduces” the possibilities
of the state

Axiom 1: ‖x‖ = 1 for x ∈ H (seperable)

Axiom 2: Measurement = Projection Operator

Axiom 3: Observables = Self-adjoint Operators

Axiom 4: 〈A〉 = 〈x ,Ax〉 =
∫
xAxdt
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Basic Terminology

Let T : H1 −→ H2 be linear and T ∗ be its adjoint with
D (T ∗) = {y ∈ H2 : |〈Tx , y〉| ≤ k ‖x‖ ,∀x ∈ H1}. Then, T is

Symmetric if 〈Tx , y〉 = 〈x ,Ty〉 ∀x , y ∈ D (T ).
Hermitian if T is symmetric and bounded and D (T ) = H1

Self-adjoint if T is symmetric and D (T ) = D (T ∗)
Isometric if ‖Tx‖ = ‖x‖ and unitary if T is isometric and surjective

Eigenvectors of a compact, self-adjoint operator form an orthonormal
basis.

P (r, t) = (−r, t) and T (r, t) = (r,−t)

2-form φ is symmetric (anti-) if φ (x , y) = φ (y , x) = (−φ (y , x))

Axiom 5: Hψ = Eψ = i ∂∂tψ (analogy with hearing the shape of a
drum) with H self-adjoint for

real eigenvalues with a lower bound;
time evolution of the theory U (t) = e−

i
~ tH by x (t + s) = U (t) x (s)

and
incorporation of symmetry
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Basic Terminology

Lorentz invariant if 〈Tx,Tx〉 = 〈x, x〉 = x2 + y2 + z2 − c2t2 where
‖x‖2 = x∗Mx for x = (x , y , z , t) ∈ R3+1

Lorentz Group.. (with origin fixed!) =O (3, 1;R)[4]

= (POLG ) ∪ (POLG × P) ∪ (POLG × T ) ∪ (POLG × PT ) (broken
symmetry)

T (p̂f ) = −p̂f and T (x̂ f ) = x̂ f =⇒ T (f ) = f ∗ (follows from
[x̂ , p̂] = x̂ p̂ − p̂x̂ = i~I ),

P (p̂f ) = −p̂f and P (x̂ f ) = −x̂ f . Combined, PT (fx) = f ∗−x

H = p̂2

2m + 1
2kx̂

2
(
En = h

(
n + 1

2

))
is already PT -Symmetric(

x̂ = xI ; p̂ = i d
dx

)
Quantum Theory is symmetric under A if [A,H] = 0 (i.e., A = H∗AH)

=⇒ Eigenvalues (Hφn = cnφn) of H are eigenvalues of A

Can Hamiltonian be PT -Symmetric?[1]
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PT -Symmetry and Quantum Mechanics[1]

Important element: i x̂ e.g. H = p̂2

2m + 1
2kx̂

2 (i x̂)δ

Eigenenergies E = Σanδ
n (is E <∞?)

PT -Symmetry is broken if δ < −2

when m = 0 the spectrum of H exhibits three distinct
behaviors as a function of N . When N ≥ 2, the spectrum
is infinite, discrete, and entirely real and positive. (This
region includes the case N = 4 for which H = p2 − x4;
the spectrum of this Hamiltonian is positive and discrete
and 〈x〉 6= 0 in the ground state because H breaks parity
symmetry!) At the lower bound N = 2 of this region
lies the harmonic oscillator. A phase transition occurs
at N = 2; when 1 < N < 2, there are only a finite
number of real positive eigenvalues and an infinite num-
ber of complex conjugate pairs of eigenvalues. In this
region PT symmetry is spontaneously broken [10]. As N
decreases from 2 to 1, adjacent energy levels merge into
complex conjugate pairs beginning at the high end of the
spectrum; ultimately, the only remaining real eigenvalue
is the ground-state energy, which diverges as N → 1+

[11]. When N ≤ 1, there are no real eigenvalues. The
massive case m 6= 0 is even more elaborate; there is a
phase transition at N = 1 in addition to that at N = 2.
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FIG. 1. Energy levels of the Hamiltonian H = p2 − (ix)N

as a function of the parameter N . There are three regions:
When N ≥ 2 the spectrum is real and positive. The lower
bound of this region, N = 2, corresponds to the harmonic
oscillator, whose energy levels are En = 2n + 1. When
1 < N < 2, there are a finite number of real positive eigen-
values and an infinite number of complex conjugate pairs of
eigenvalues. As N decreases from 2 to 1, the number of real
eigenvalues decreases; when N ≤ 1.42207, the only real eigen-
value is the ground-state energy. As N approaches 1+, the
ground-state energy diverges. For N ≤ 1 there are no real
eigenvalues.

The Schrödinger eigenvalue differential equation corre-
sponding to the Hamiltonian (1) with m = 0 is

− ψ′′(x) − (ix)Nψ(x) = Eψ(x). (2)

Ordinarily, the boundary conditions that give quantized

energy levels E are that ψ(x) → 0 as |x| → ∞ on the
real axis; this condition suffices when 1 < N < 4. How-
ever, for arbitrary realN we must continue the eigenvalue
problem for (2) into the complex-x plane. Thus, we re-
place the real-x axis by a contour in the complex plane
along which the differential equation holds and we im-
pose the boundary conditions that lead to quantization
at the endpoints of this contour. (Eigenvalue problems
on complex contours are discussed in Ref. [12].)

Re(x)

Im(x)

FIG. 2. Wedges in the complex-x plane containing the
contour on which the eigenvalue problem for the differential
equation (2) for N = 4.2 is posed. In these wedges ψ(x)
vanishes exponentially as |x| → ∞. The wedges are bounded
by Stokes lines of the differential equation. The center of the
wedge, where ψ(x) vanishes most rapidly, is an anti-Stokes
line.

The regions in the cut complex-x plane in which ψ(x)
vanishes exponentially as |x| → ∞ are wedges (see Fig. 2);
these wedges are bounded by the Stokes lines of the dif-
ferential equation [13]. The center of the wedge, where
ψ(x) vanishes most rapidly, is called an anti-Stokes line.
There are many wedges in which ψ(x) → 0 as |x| → ∞.

Thus, there are many eigenvalue problems associated
with a given differential equation [12]. However, we
choose to continue the eigenvalue equation (2) away from
the conventional harmonic oscillator problem at N = 2.
The wave function for N = 2 vanishes in wedges of angu-
lar opening 1

2π centered about the negative- and positive-
real x axes. For arbitrary N the anti-Stokes lines at the
centers of the left and right wedges lie at the angles

θleft = −π +
N − 2

N + 2

π

2
and θright = −N − 2

N + 2

π

2
. (3)

The opening angle of these wedges is ∆ = 2π/(N + 2).
The differential equation (2) may be integrated on any
path in the complex-x plane so long as the ends of the
path approach complex infinity inside the left wedge and

2

N = δ + 2
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PT -Symmetry and Quantum Mechanics[1]

H = p̂2

2m + 1
2kx̂

2 (i x̂)δ has real eigenvalues for all δ ≥ 0 (note: H is
PT -symmetric but not Hermitian for δ 6= 0)

Proof.

[H,PT ] = 0 =⇒ ∃φn : Hφn = Eφn and
PT φn = λφn =⇒ (PT )2 φn = |λ|2 φn =⇒ λ = e iθ. We can choose θ = 0.
Now, Hφn = Eφn =⇒ Eφn = E ∗φn[3]

Σ (−1)n φn (x)φn (y) = δ (x − y)

Can we now have a new condition: H = HPT instead of H = H∗?
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Complex Extension of Quantum Mechanics[2]

If PT -Symmetry is not broken, then is ‖HPT f ‖ = ‖f ‖?

〈f , g〉PT = 〈f ,PT g〉 =
∫
f ∗ (x)PT g (x) dt =

∫
f ∗ (x) g∗ (−x) dt

=⇒ ∃φn : 〈φn, φn〉PT = −1 (‖φ‖PT = i) and
〈φm, φn〉PT = (−1)m δnm (in fact,=⇒ SU (n, n), not SU (2n))

Aim: Define C such that C represents measurement of signature of
〈., .〉PT .

Choice: C = eQ(x̂ ,p̂)P such that Q (x̂ , p̂) = −Q (−x̂ ,−p̂) and
[C,H] = 0. Then, C2 = 1, [C,P] 6= 0 but [C,PT ] = 0 so that
‖φ‖CPT = 1
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Abstract

During the recent developments of quantum theory it has been claried that
the observable quantities (like energy or position) may be represented by
operators Λ (with real spectra) which are manifestly non-Hermitian in a
preselected “friendly” Hilbert space H(F). The consistency of these models
is known to require an upgrade of the inner product, i.e., mathematically
speaking, a transition H(F) → H(S) to another, “standard” Hilbert space.
We prove that whenever we are given more than one candidate for an
observable (i.e., say, two operators Λ0 and Λ1) in advance, such an
upgrade need not exist in general.
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Introduction

“There exists a subtle correspondence between the choice of the so
called irreducible sets of the candidates Λj for the observables and the
role played by these sets in the removal of the well known ambiguity
of the assignment of the ... Hilbert space H(F) to a single observable
Λ0”

Entirely generic observables Λ0 and Λ1 are incompatible, if they do
not commute.

General approach: H = Θ−1H∗Θ for Θ = Ω∗Ω where
Ω : H(F) −→ H(T ) and Θ = Θ (Λ0,Λ1) is the Tensor Metric, not
assumed to be trivial.

Find Ω so that 〈f , g〉F = 〈Ωf ,Ωg〉 = 〈f ,Θg〉
Natural restriction: Θj = U∗j DjUj where Uj is an orthogonal matrix in
the basis of the eigenvectors of an Λj

When is Θj = Θi? Obvious: [Θj ,Θi ] = 0. Another possibility:
ΛjΘj = ΘjΛ

∗
j
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Main Result

Past approaches: let x̂ 7−→ X̂ , p̂ 7−→ P̂ such that

â = 1√
2

(x̂ + i p̂) 7−→ 1√
2

(
X̂ + i P̂

)
and

â† = 1√
2

(x̂ − i p̂) 7−→ 1√
2

(
X̂ − i P̂

)
conditional to

ââ† − qâ†â =
[
â, â†

]
q

= I . Let q = 1− ε.

Then, X̂ = x̂ + 1
8εX1 +O

(
ε2
)

with
X1 = x̂3 − x̂ p̂2 + i x̂2 + i x̂2p̂ − x̂ + i p̂3 + p̂x̂ p̂ + p̂2x̂ et.c

Also, Hq = P̂2 + X̂ 2 = p̂2 + x̂2 + 1
8εH1 with

H1 = 2x̂4 − x̂2 + 3p̂2 − 3 + 2i x̂3p̂ + 2i x̂ p̂3 + 2x̂2p̂2 − 8i x̂ p̂.

H1 6= H∗1 and X1 6= X ∗1
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