Problem of the coexistence of several non-Hermitian observables in $\mathcal{P T}$-symmetric quantum mechanics

Miloslav Znojil, Iveta Semorádová, Frantiusek Ruziucka, Hafida Moulla, and

Ilhem Leghrib
Phys. Rev. A 95, 042122. 18 April 2017

Abdullah Naeem Malik

Delaware State University

23 April 2018

"Everything which is not forbidden is compulsory" Gell-Mann

Overview

- Basic Quantum Mechanics
- Some Terminology
- Background
- PT-Symmetric Quantum Theory[1]
- Complex Extension of Quantum Mechanics[2]
- Abstract of the paper
- Introduction of the paper
- Main result of the paper

Physical Motivation for Quantum Mechanics

Mathematical Motivation for Quantum Mechanics

- $\Delta Q \Delta P \geq \frac{\hbar}{2}$

Mathematical Motivation for Quantum Mechanics

- $\Delta Q \Delta P \geq \frac{\hbar}{2}$
- $\Longleftarrow Q P \neq P Q$ (i.e. $[Q, P]=Q P-P Q \neq 0$)

Mathematical Motivation for Quantum Mechanics

- $\Delta Q \Delta P \geq \frac{\hbar}{2}$
- $\Longleftarrow Q P \neq P Q$ (i.e. $[Q, P]=Q P-P Q \neq 0$)
- Randomness is inherent

Mathematical Motivation for Quantum Mechanics

- $\Delta Q \Delta P \geq \frac{\hbar}{2}$
- $\Longleftarrow Q P \neq P Q$ (i.e. $[Q, P]=Q P-P Q \neq 0$)
- Randomness is inherent
- If $x=\alpha_{1} e_{1}+\ldots+\alpha_{n} e_{n}$, then measurement "reduces" the possibilities of the state

Mathematical Motivation for Quantum Mechanics

- $\Delta Q \Delta P \geq \frac{\hbar}{2}$
- $\Longleftarrow Q P \neq P Q$ (i.e. $[Q, P]=Q P-P Q \neq 0$)
- Randomness is inherent
- If $x=\alpha_{1} e_{1}+\ldots+\alpha_{n} e_{n}$, then measurement "reduces" the possibilities of the state
- Axiom 1: $\|x\|=1$ for $x \in \mathcal{H}$ (seperable)

Mathematical Motivation for Quantum Mechanics

- $\Delta Q \Delta P \geq \frac{\hbar}{2}$
- $\Longleftarrow Q P \neq P Q$ (i.e. $[Q, P]=Q P-P Q \neq 0$)
- Randomness is inherent
- If $x=\alpha_{1} e_{1}+\ldots+\alpha_{n} e_{n}$, then measurement "reduces" the possibilities of the state
- Axiom 1: $\|x\|=1$ for $x \in \mathcal{H}$ (seperable)
- Axiom 2: Measurement $=$ Projection Operator

Mathematical Motivation for Quantum Mechanics

- $\Delta Q \Delta P \geq \frac{\hbar}{2}$
- $\Longleftarrow Q P \neq P Q$ (i.e. $[Q, P]=Q P-P Q \neq 0$)
- Randomness is inherent
- If $x=\alpha_{1} e_{1}+\ldots+\alpha_{n} e_{n}$, then measurement "reduces" the possibilities of the state
- Axiom 1: $\|x\|=1$ for $x \in \mathcal{H}$ (seperable)
- Axiom 2: Measurement = Projection Operator
- Axiom 3: Observables = Self-adjoint Operators

Mathematical Motivation for Quantum Mechanics

- $\Delta Q \Delta P \geq \frac{\hbar}{2}$
- $\Longleftarrow Q P \neq P Q$ (i.e. $[Q, P]=Q P-P Q \neq 0$)
- Randomness is inherent
- If $x=\alpha_{1} e_{1}+\ldots+\alpha_{n} e_{n}$, then measurement "reduces" the possibilities of the state
- Axiom 1: $\|x\|=1$ for $x \in \mathcal{H}$ (seperable)
- Axiom 2: Measurement = Projection Operator
- Axiom 3: Observables = Self-adjoint Operators
- Axiom 4: $\langle A\rangle=\langle x, A x\rangle=\int \bar{x} A x d t$

Basic Terminology

- Let $T: \mathcal{H}_{1} \longrightarrow \mathcal{H}_{2}$ be linear and T^{*} be its adjoint with $\mathcal{D}\left(T^{*}\right)=\left\{y \in \mathcal{H}_{2}:|\langle T x, y\rangle| \leq k\|x\|, \forall x \in \mathcal{H}_{1}\right\}$. Then, T is

Basic Terminology

- Let $T: \mathcal{H}_{1} \longrightarrow \mathcal{H}_{2}$ be linear and T^{*} be its adjoint with $\mathcal{D}\left(T^{*}\right)=\left\{y \in \mathcal{H}_{2}:|\langle T x, y\rangle| \leq k\|x\|, \forall x \in \mathcal{H}_{1}\right\}$. Then, T is - Symmetric if $\langle T x, y\rangle=\langle x, T y\rangle \forall x, y \in \mathcal{D}(T)$.

Basic Terminology

- Let $T: \mathcal{H}_{1} \longrightarrow \mathcal{H}_{2}$ be linear and T^{*} be its adjoint with $\mathcal{D}\left(T^{*}\right)=\left\{y \in \mathcal{H}_{2}:|\langle T x, y\rangle| \leq k\|x\|, \forall x \in \mathcal{H}_{1}\right\}$. Then, T is
- Symmetric if $\langle T x, y\rangle=\langle x, T y\rangle \forall x, y \in \mathcal{D}(T)$.
- Hermitian if T is symmetric and bounded and $\overline{\mathcal{D}(T)}=\mathcal{H}_{1}$

Basic Terminology

- Let $T: \mathcal{H}_{1} \longrightarrow \mathcal{H}_{2}$ be linear and T^{*} be its adjoint with $\mathcal{D}\left(T^{*}\right)=\left\{y \in \mathcal{H}_{2}:|\langle T x, y\rangle| \leq k\|x\|, \forall x \in \mathcal{H}_{1}\right\}$. Then, T is
- Symmetric if $\langle T x, y\rangle=\langle x, T y\rangle \forall x, y \in \mathcal{D}(T)$.
- Hermitian if T is symmetric and bounded and $\overline{\mathcal{D}(T)}=\mathcal{H}_{1}$
- Self-adjoint if T is symmetric and $\mathcal{D}(T)=\mathcal{D}\left(T^{*}\right)$

Basic Terminology

- Let $T: \mathcal{H}_{1} \longrightarrow \mathcal{H}_{2}$ be linear and T^{*} be its adjoint with $\mathcal{D}\left(T^{*}\right)=\left\{y \in \mathcal{H}_{2}:|\langle T x, y\rangle| \leq k\|x\|, \forall x \in \mathcal{H}_{1}\right\}$. Then, T is
- Symmetric if $\langle T x, y\rangle=\langle x, T y\rangle \forall x, y \in \mathcal{D}(T)$.
- Hermitian if T is symmetric and bounded and $\overline{\mathcal{D}(T)}=\mathcal{H}_{1}$
- Self-adjoint if T is symmetric and $\mathcal{D}(T)=\mathcal{D}\left(T^{*}\right)$
- Isometric if $\|T x\|=\|x\|$ and unitary if T is isometric and surjective

Basic Terminology

- Let $T: \mathcal{H}_{1} \longrightarrow \mathcal{H}_{2}$ be linear and T^{*} be its adjoint with $\mathcal{D}\left(T^{*}\right)=\left\{y \in \mathcal{H}_{2}:|\langle T x, y\rangle| \leq k\|x\|, \forall x \in \mathcal{H}_{1}\right\}$. Then, T is
- Symmetric if $\langle T x, y\rangle=\langle x, T y\rangle \forall x, y \in \mathcal{D}(T)$.
- Hermitian if T is symmetric and bounded and $\overline{\mathcal{D}(T)}=\mathcal{H}_{1}$
- Self-adjoint if T is symmetric and $\mathcal{D}(T)=\mathcal{D}\left(T^{*}\right)$
- Isometric if $\left\|T_{x}\right\|=\|x\|$ and unitary if T is isometric and surjective
- Eigenvectors of a compact, self-adjoint operator form an orthonormal basis.

Basic Terminology

- Let $T: \mathcal{H}_{1} \longrightarrow \mathcal{H}_{2}$ be linear and T^{*} be its adjoint with $\mathcal{D}\left(T^{*}\right)=\left\{y \in \mathcal{H}_{2}:|\langle T x, y\rangle| \leq k\|x\|, \forall x \in \mathcal{H}_{1}\right\}$. Then, T is
- Symmetric if $\langle T x, y\rangle=\langle x, T y\rangle \forall x, y \in \mathcal{D}(T)$.
- Hermitian if T is symmetric and bounded and $\overline{\mathcal{D}(T)}=\mathcal{H}_{1}$
- Self-adjoint if T is symmetric and $\mathcal{D}(T)=\mathcal{D}\left(T^{*}\right)$
- Isometric if $\left\|T_{x}\right\|=\|x\|$ and unitary if T is isometric and surjective
- Eigenvectors of a compact, self-adjoint operator form an orthonormal basis.
- $\mathcal{P}(\mathbf{r}, t)=(-\mathbf{r}, t)$ and $\mathcal{T}(\mathbf{r}, t)=(\mathbf{r},-t)$

Basic Terminology

- Let $T: \mathcal{H}_{1} \longrightarrow \mathcal{H}_{2}$ be linear and T^{*} be its adjoint with $\mathcal{D}\left(T^{*}\right)=\left\{y \in \mathcal{H}_{2}:|\langle T x, y\rangle| \leq k\|x\|, \forall x \in \mathcal{H}_{1}\right\}$. Then, T is
- Symmetric if $\langle T x, y\rangle=\langle x, T y\rangle \forall x, y \in \mathcal{D}(T)$.
- Hermitian if T is symmetric and bounded and $\overline{\mathcal{D}(T)}=\mathcal{H}_{1}$
- Self-adjoint if T is symmetric and $\mathcal{D}(T)=\mathcal{D}\left(T^{*}\right)$
- Isometric if $\left\|T_{x}\right\|=\|x\|$ and unitary if T is isometric and surjective
- Eigenvectors of a compact, self-adjoint operator form an orthonormal basis.
- $\mathcal{P}(\mathbf{r}, t)=(-\mathbf{r}, t)$ and $\mathcal{T}(\mathbf{r}, t)=(\mathbf{r},-t)$
- 2 -form ϕ is symmetric (anti-) if $\phi(x, y)=\phi(y, x)=(-\phi(y, x))$

Basic Terminology

- Let $T: \mathcal{H}_{1} \longrightarrow \mathcal{H}_{2}$ be linear and T^{*} be its adjoint with $\mathcal{D}\left(T^{*}\right)=\left\{y \in \mathcal{H}_{2}:|\langle T x, y\rangle| \leq k\|x\|, \forall x \in \mathcal{H}_{1}\right\}$. Then, T is
- Symmetric if $\langle T x, y\rangle=\langle x, T y\rangle \forall x, y \in \mathcal{D}(T)$.
- Hermitian if T is symmetric and bounded and $\overline{\mathcal{D}(T)}=\mathcal{H}_{1}$
- Self-adjoint if T is symmetric and $\mathcal{D}(T)=\mathcal{D}\left(T^{*}\right)$
- Isometric if $\|T x\|=\|x\|$ and unitary if T is isometric and surjective
- Eigenvectors of a compact, self-adjoint operator form an orthonormal basis.
- $\mathcal{P}(\mathbf{r}, t)=(-\mathbf{r}, t)$ and $\mathcal{T}(\mathbf{r}, t)=(\mathbf{r},-t)$
- 2-form ϕ is symmetric (anti-) if $\phi(x, y)=\phi(y, x)=(-\phi(y, x))$
- Axiom 5: $H \psi=E \psi=i \frac{\partial}{\partial t} \psi$ (analogy with hearing the shape of a drum) with H self-adjoint for

Basic Terminology

- Let $T: \mathcal{H}_{1} \longrightarrow \mathcal{H}_{2}$ be linear and T^{*} be its adjoint with $\mathcal{D}\left(T^{*}\right)=\left\{y \in \mathcal{H}_{2}:|\langle T x, y\rangle| \leq k\|x\|, \forall x \in \mathcal{H}_{1}\right\}$. Then, T is
- Symmetric if $\langle T x, y\rangle=\langle x, T y\rangle \forall x, y \in \mathcal{D}(T)$.
- Hermitian if T is symmetric and bounded and $\overline{\mathcal{D}(T)}=\mathcal{H}_{1}$
- Self-adjoint if T is symmetric and $\mathcal{D}(T)=\mathcal{D}\left(T^{*}\right)$
- Isometric if $\|T x\|=\|x\|$ and unitary if T is isometric and surjective
- Eigenvectors of a compact, self-adjoint operator form an orthonormal basis.
- $\mathcal{P}(\mathbf{r}, t)=(-\mathbf{r}, t)$ and $\mathcal{T}(\mathbf{r}, t)=(\mathbf{r},-t)$
- 2-form ϕ is symmetric (anti-) if $\phi(x, y)=\phi(y, x)=(-\phi(y, x))$
- Axiom 5: $H \psi=E \psi=i \frac{\partial}{\partial t} \psi$ (analogy with hearing the shape of a drum) with H self-adjoint for
- real eigenvalues with a lower bound;

Basic Terminology

- Let $T: \mathcal{H}_{1} \longrightarrow \mathcal{H}_{2}$ be linear and T^{*} be its adjoint with $\mathcal{D}\left(T^{*}\right)=\left\{y \in \mathcal{H}_{2}:|\langle T x, y\rangle| \leq k\|x\|, \forall x \in \mathcal{H}_{1}\right\}$. Then, T is
- Symmetric if $\langle T x, y\rangle=\langle x, T y\rangle \forall x, y \in \mathcal{D}(T)$.
- Hermitian if T is symmetric and bounded and $\overline{\mathcal{D}(T)}=\mathcal{H}_{1}$
- Self-adjoint if T is symmetric and $\mathcal{D}(T)=\mathcal{D}\left(T^{*}\right)$
- Isometric if $\|T x\|=\|x\|$ and unitary if T is isometric and surjective
- Eigenvectors of a compact, self-adjoint operator form an orthonormal basis.
- $\mathcal{P}(\mathbf{r}, t)=(-\mathbf{r}, t)$ and $\mathcal{T}(\mathbf{r}, t)=(\mathbf{r},-t)$
- 2-form ϕ is symmetric (anti-) if $\phi(x, y)=\phi(y, x)=(-\phi(y, x))$
- Axiom 5: $H \psi=E \psi=i \frac{\partial}{\partial t} \psi$ (analogy with hearing the shape of a drum) with H self-adjoint for
- real eigenvalues with a lower bound;
- time evolution of the theory $U(t)=e^{-\frac{i}{\hbar} t H}$ by $x(t+s)=U(t) \times(s)$ and

Basic Terminology

- Let $T: \mathcal{H}_{1} \longrightarrow \mathcal{H}_{2}$ be linear and T^{*} be its adjoint with $\mathcal{D}\left(T^{*}\right)=\left\{y \in \mathcal{H}_{2}:|\langle T x, y\rangle| \leq k\|x\|, \forall x \in \mathcal{H}_{1}\right\}$. Then, T is
- Symmetric if $\left\langle T_{x}, y\right\rangle=\left\langle x, T_{y}\right\rangle \forall x, y \in \mathcal{D}(T)$.
- Hermitian if T is symmetric and bounded and $\overline{\mathcal{D}(T)}=\mathcal{H}_{1}$
- Self-adjoint if T is symmetric and $\mathcal{D}(T)=\mathcal{D}\left(T^{*}\right)$
- Isometric if $\|T x\|=\|x\|$ and unitary if T is isometric and surjective
- Eigenvectors of a compact, self-adjoint operator form an orthonormal basis.
- $\mathcal{P}(\mathbf{r}, t)=(-\mathbf{r}, t)$ and $\mathcal{T}(\mathbf{r}, t)=(\mathbf{r},-t)$
- 2-form ϕ is symmetric (anti-) if $\phi(x, y)=\phi(y, x)=(-\phi(y, x))$
- Axiom 5: $H \psi=E \psi=i \frac{\partial}{\partial t} \psi$ (analogy with hearing the shape of a drum) with H self-adjoint for
- real eigenvalues with a lower bound;
- time evolution of the theory $U(t)=e^{-\frac{i}{\hbar} t H}$ by $x(t+s)=U(t) \times(s)$ and
- incorporation of symmetry

Basic Terminology

- Lorentz invariant if $\langle T \mathbf{x}, T \mathbf{x}\rangle=\langle\mathbf{x}, \mathbf{x}\rangle=x^{2}+y^{2}+z^{2}-c^{2} t^{2}$ where $\|x\|^{2}=\mathbf{x}^{*} M \mathbf{x}$ for $\mathbf{x}=(x, y, z, t) \in \mathbb{R}^{3+1}$

Basic Terminology

- Lorentz invariant if $\langle T \mathbf{x}, T \mathbf{x}\rangle=\langle\mathbf{x}, \mathbf{x}\rangle=x^{2}+y^{2}+z^{2}-c^{2} t^{2}$ where $\|x\|^{2}=\mathbf{x}^{*} M \mathbf{x}$ for $\mathbf{x}=(x, y, z, t) \in \mathbb{R}^{3+1}$
- Lorentz Group.. (with origin fixed!) $=O(3,1 ; \mathbb{R})[4]$

Basic Terminology

- Lorentz invariant if $\langle T \mathbf{x}, T \mathbf{x}\rangle=\langle\mathbf{x}, \mathbf{x}\rangle=x^{2}+y^{2}+z^{2}-c^{2} t^{2}$ where $\|x\|^{2}=\mathbf{x}^{*} M \mathbf{x}$ for $\mathbf{x}=(x, y, z, t) \in \mathbb{R}^{3+1}$
- Lorentz Group.. (with origin fixed!) $=O(3,1 ; \mathbb{R})[4]$
- $=(P O L G) \cup(P O L G \times \mathcal{P}) \cup(P O L G \times \mathcal{T}) \cup(P O L G \times \mathcal{P} \mathcal{T})$ (broken symmetry)

Basic Terminology

- Lorentz invariant if $\langle T \mathbf{x}, T \mathbf{x}\rangle=\langle\mathbf{x}, \mathbf{x}\rangle=x^{2}+y^{2}+z^{2}-c^{2} t^{2}$ where $\|x\|^{2}=\mathbf{x}^{*} M \mathbf{x}$ for $\mathbf{x}=(x, y, z, t) \in \mathbb{R}^{3+1}$
- Lorentz Group.. (with origin fixed!) $=O(3,1 ; \mathbb{R})[4]$
- $=(P O L G) \cup(P O L G \times \mathcal{P}) \cup(P O L G \times \mathcal{T}) \cup(P O L G \times \mathcal{P} \mathcal{T})$ (broken symmetry)
- $\mathcal{T}(\hat{p} f)=-\hat{p} f$ and $\mathcal{T}(\hat{x} f)=\hat{x} f \Longrightarrow \mathcal{T}(f)=f^{*}$ (follows from $[\hat{x}, \hat{p}]=\hat{x} \hat{p}-\hat{p} \hat{x}=i \hbar l)$,

Basic Terminology

- Lorentz invariant if $\langle T \mathbf{x}, T \mathbf{x}\rangle=\langle\mathbf{x}, \mathbf{x}\rangle=x^{2}+y^{2}+z^{2}-c^{2} t^{2}$ where $\|x\|^{2}=\mathbf{x}^{*} M \mathbf{x}$ for $\mathbf{x}=(x, y, z, t) \in \mathbb{R}^{3+1}$
- Lorentz Group.. (with origin fixed!) $=O(3,1 ; \mathbb{R})[4]$
- $=(P O L G) \cup(P O L G \times \mathcal{P}) \cup(P O L G \times \mathcal{T}) \cup(P O L G \times \mathcal{P} \mathcal{T})$ (broken symmetry)
- $\mathcal{T}(\hat{p} f)=-\hat{p} f$ and $\mathcal{T}(\hat{x} f)=\hat{x} f \Longrightarrow \mathcal{T}(f)=f^{*}$ (follows from $[\hat{x}, \hat{p}]=\hat{x} \hat{p}-\hat{p} \hat{x}=i \hbar l)$,
- $\mathcal{P}(\hat{p} f)=-\hat{p} f$ and $\mathcal{P}(\hat{x} f)=-\hat{x} f$. Combined, $\mathcal{P} \mathcal{T}\left(f_{x}\right)=f_{-x}^{*}$

Basic Terminology

- Lorentz invariant if $\langle T \mathbf{x}, T \mathbf{x}\rangle=\langle\mathbf{x}, \mathbf{x}\rangle=x^{2}+y^{2}+z^{2}-c^{2} t^{2}$ where $\|x\|^{2}=\mathbf{x}^{*} M \mathbf{x}$ for $\mathbf{x}=(x, y, z, t) \in \mathbb{R}^{3+1}$
- Lorentz Group.. (with origin fixed!) $=O(3,1 ; \mathbb{R})[4]$
- $=(P O L G) \cup(P O L G \times \mathcal{P}) \cup(P O L G \times \mathcal{T}) \cup(P O L G \times \mathcal{P} \mathcal{T})$ (broken symmetry)
- $\mathcal{T}(\hat{p} f)=-\hat{p} f$ and $\mathcal{T}(\hat{x} f)=\hat{x} f \Longrightarrow \mathcal{T}(f)=f^{*}$ (follows from $[\hat{x}, \hat{p}]=\hat{x} \hat{p}-\hat{p} \hat{x}=i \hbar l)$,
- $\mathcal{P}(\hat{p} f)=-\hat{p} f$ and $\mathcal{P}(\hat{x} f)=-\hat{x} f$. Combined, $\mathcal{P} \mathcal{T}\left(f_{x}\right)=f_{-x}^{*}$
- $H=\frac{\hat{\rho}^{2}}{2 m}+\frac{1}{2} k \hat{x}^{2}\left(E_{n}=h\left(n+\frac{1}{2}\right)\right)$ is already $\mathcal{P} \mathcal{T}$-Symmetric $\left(\hat{x}=x l ; \hat{p}=i \frac{d}{d x}\right)$

Basic Terminology

- Lorentz invariant if $\langle T \mathbf{x}, T \mathbf{x}\rangle=\langle\mathbf{x}, \mathbf{x}\rangle=x^{2}+y^{2}+z^{2}-c^{2} t^{2}$ where $\|x\|^{2}=\mathbf{x}^{*} M \mathbf{x}$ for $\mathbf{x}=(x, y, z, t) \in \mathbb{R}^{3+1}$
- Lorentz Group.. (with origin fixed!) $=O(3,1 ; \mathbb{R})[4]$
- $=(P O L G) \cup(P O L G \times \mathcal{P}) \cup(P O L G \times \mathcal{T}) \cup(P O L G \times \mathcal{P} \mathcal{T})$ (broken symmetry)
- $\mathcal{T}(\hat{p} f)=-\hat{p} f$ and $\mathcal{T}(\hat{x} f)=\hat{x} f \Longrightarrow \mathcal{T}(f)=f^{*}$ (follows from $[\hat{x}, \hat{p}]=\hat{x} \hat{p}-\hat{p} \hat{x}=i \hbar l)$,
- $\mathcal{P}(\hat{p} f)=-\hat{p} f$ and $\mathcal{P}(\hat{x} f)=-\hat{x} f$. Combined, $\mathcal{P} \mathcal{T}\left(f_{x}\right)=f_{-x}^{*}$
- $H=\frac{\hat{\rho}^{2}}{2 m}+\frac{1}{2} k \hat{x}^{2}\left(E_{n}=h\left(n+\frac{1}{2}\right)\right)$ is already $\mathcal{P} \mathcal{T}$-Symmetric $\left(\hat{x}=x l ; \hat{p}=i \frac{d}{d x}\right)$
- Quantum Theory is symmetric under A if $[A, H]=0$ (i.e., $A=H^{*} A H$)

Basic Terminology

- Lorentz invariant if $\langle T \mathbf{x}, T \mathbf{x}\rangle=\langle\mathbf{x}, \mathbf{x}\rangle=x^{2}+y^{2}+z^{2}-c^{2} t^{2}$ where $\|x\|^{2}=\mathbf{x}^{*} M \mathbf{x}$ for $\mathbf{x}=(x, y, z, t) \in \mathbb{R}^{3+1}$
- Lorentz Group.. (with origin fixed!) $=O(3,1 ; \mathbb{R})[4]$
- $=(P O L G) \cup(P O L G \times \mathcal{P}) \cup(P O L G \times \mathcal{T}) \cup(P O L G \times \mathcal{P} \mathcal{T})$ (broken symmetry)
- $\mathcal{T}(\hat{p} f)=-\hat{p} f$ and $\mathcal{T}(\hat{x} f)=\hat{x} f \Longrightarrow \mathcal{T}(f)=f^{*}$ (follows from $[\hat{x}, \hat{p}]=\hat{x} \hat{p}-\hat{p} \hat{x}=i \hbar l)$,
- $\mathcal{P}(\hat{p} f)=-\hat{p} f$ and $\mathcal{P}(\hat{x} f)=-\hat{x} f$. Combined, $\mathcal{P} \mathcal{T}\left(f_{x}\right)=f_{-x}^{*}$
- $H=\frac{\hat{\rho}^{2}}{2 m}+\frac{1}{2} k \hat{x}^{2}\left(E_{n}=h\left(n+\frac{1}{2}\right)\right)$ is already $\mathcal{P} \mathcal{T}$-Symmetric $\left(\hat{x}=x l ; \hat{p}=i \frac{d}{d x}\right)$
- Quantum Theory is symmetric under A if $[A, H]=0$ (i.e., $A=H^{*} A H$)
- \Longrightarrow Eigenvalues $\left(H \phi_{n}=c_{n} \phi_{n}\right)$ of H are eigenvalues of A

Basic Terminology

- Lorentz invariant if $\langle T \mathbf{x}, T \mathbf{x}\rangle=\langle\mathbf{x}, \mathbf{x}\rangle=x^{2}+y^{2}+z^{2}-c^{2} t^{2}$ where $\|x\|^{2}=\mathbf{x}^{*} M \mathbf{x}$ for $\mathbf{x}=(x, y, z, t) \in \mathbb{R}^{3+1}$
- Lorentz Group.. (with origin fixed!) $=O(3,1 ; \mathbb{R})[4]$
- $=(P O L G) \cup(P O L G \times \mathcal{P}) \cup(P O L G \times \mathcal{T}) \cup(P O L G \times \mathcal{P} \mathcal{T})$ (broken symmetry)
- $\mathcal{T}(\hat{p} f)=-\hat{p} f$ and $\mathcal{T}(\hat{x} f)=\hat{x} f \Longrightarrow \mathcal{T}(f)=f^{*}$ (follows from $[\hat{x}, \hat{p}]=\hat{x} \hat{p}-\hat{p} \hat{x}=i \hbar I)$,
- $\mathcal{P}(\hat{p} f)=-\hat{p} f$ and $\mathcal{P}(\hat{x} f)=-\hat{x} f$. Combined, $\mathcal{P} \mathcal{T}\left(f_{x}\right)=f_{-x}^{*}$
- $H=\frac{\hat{\rho}^{2}}{2 m}+\frac{1}{2} k \hat{x}^{2}\left(E_{n}=h\left(n+\frac{1}{2}\right)\right)$ is already $\mathcal{P} \mathcal{T}$-Symmetric $\left(\hat{x}=x l ; \hat{p}=i \frac{d}{d x}\right)$
- Quantum Theory is symmetric under A if $[A, H]=0$ (i.e., $A=H^{*} A H$)
- \Longrightarrow Eigenvalues $\left(H \phi_{n}=c_{n} \phi_{n}\right)$ of H are eigenvalues of A
- Can Hamiltonian be $\mathcal{P} \mathcal{T}$-Symmetric? [1]

$\mathcal{P T}$-Symmetry and Quantum Mechanics[1]

- Important element: iरि e.g. $H=\frac{\hat{\rho}^{2}}{2 m}+\frac{1}{2} k \hat{x}^{2}(i \hat{x})^{\delta}$

$\mathcal{P T}$-Symmetry and Quantum Mechanics[1]

- Important element: iरि e.g. $H=\frac{\hat{\rho}^{2}}{2 m}+\frac{1}{2} k \hat{x}^{2}(i \hat{x})^{\delta}$
- Eigenenergies $E=\Sigma a_{n} \delta^{n}$ (is $E<\infty$?)

$\mathcal{P T}$-Symmetry and Quantum Mechanics[1]

- Important element: iरि e.g. $H=\frac{\hat{\rho}^{2}}{2 m}+\frac{1}{2} k \hat{x}^{2}(i \hat{x})^{\delta}$
- Eigenenergies $E=\Sigma a_{n} \delta^{n}$ (is $E<\infty$?)
- $\mathcal{P} \mathcal{T}$-Symmetry is broken if $\delta<-2$

PT-Symmetry and Quantum Mechanics[1]

- $H=\frac{\hat{\rho}^{2}}{2 m}+\frac{1}{2} k \hat{x}^{2}(i \hat{x})^{\delta}$ has real eigenvalues for all $\delta \geq 0$ (note: H is $\mathcal{P} \mathcal{T}$-symmetric but not Hermitian for $\delta \neq 0$)

$\mathcal{P T}$-Symmetry and Quantum Mechanics[1]

- $H=\frac{\hat{\rho}^{2}}{2 m}+\frac{1}{2} k \hat{x}^{2}(i \hat{x})^{\delta}$ has real eigenvalues for all $\delta \geq 0$ (note: H is $\mathcal{P} \mathcal{T}$-symmetric but not Hermitian for $\delta \neq 0$)

Proof.

$[H, \mathcal{P} \mathcal{T}]=0 \Longrightarrow \exists \phi_{n}: H \phi_{n}=E \phi_{n}$ and
$\mathcal{P} \mathcal{T} \phi_{n}=\lambda \phi_{n} \Longrightarrow(\mathcal{P} \mathcal{T})^{2} \phi_{n}=|\lambda|^{2} \phi_{n} \Longrightarrow \lambda=e^{i \theta}$. We can choose $\theta=0$.
Now, $H \phi_{n}=E \phi_{n} \Longrightarrow E \phi_{n}=E^{*} \phi_{n}[3]$

PT-Symmetry and Quantum Mechanics[1]

- $H=\frac{\hat{p}^{2}}{2 m}+\frac{1}{2} k \hat{x}^{2}(i \hat{x})^{\delta}$ has real eigenvalues for all $\delta \geq 0$ (note: H is $\mathcal{P} \mathcal{T}$-symmetric but not Hermitian for $\delta \neq 0$)

Proof.

$[H, \mathcal{P} \mathcal{T}]=0 \Longrightarrow \exists \phi_{n}: H \phi_{n}=E \phi_{n}$ and
$\mathcal{P} \mathcal{T} \phi_{n}=\lambda \phi_{n} \Longrightarrow(\mathcal{P} \mathcal{T})^{2} \phi_{n}=|\lambda|^{2} \phi_{n} \Longrightarrow \lambda=e^{i \theta}$. We can choose $\theta=0$.
Now, $H \phi_{n}=E \phi_{n} \Longrightarrow E \phi_{n}=E^{*} \phi_{n}[3]$

$$
\text { - } \Sigma(-1)^{n} \phi_{n}(x) \phi_{n}(y)=\delta(x-y)
$$

$\mathcal{P T}$-Symmetry and Quantum Mechanics[1]

- $H=\frac{\hat{p}^{2}}{2 m}+\frac{1}{2} k \hat{x}^{2}(i \hat{x})^{\delta}$ has real eigenvalues for all $\delta \geq 0$ (note: H is $\mathcal{P} \mathcal{T}$-symmetric but not Hermitian for $\delta \neq 0$)

Proof.

$[H, \mathcal{P} \mathcal{T}]=0 \Longrightarrow \exists \phi_{n}: H \phi_{n}=E \phi_{n}$ and
$\mathcal{P} \mathcal{T} \phi_{n}=\lambda \phi_{n} \Longrightarrow(\mathcal{P} \mathcal{T})^{2} \phi_{n}=|\lambda|^{2} \phi_{n} \Longrightarrow \lambda=e^{i \theta}$. We can choose $\theta=0$.
Now, $H \phi_{n}=E \phi_{n} \Longrightarrow E \phi_{n}=E^{*} \phi_{n}[3]$

- $\Sigma(-1)^{n} \phi_{n}(x) \phi_{n}(y)=\delta(x-y)$
- Can we now have a new condition: $H=H_{\mathcal{P} \mathcal{T}}$ instead of $H=H^{*}$?

Complex Extension of Quantum Mechanics[2]

- If $\mathcal{P} \mathcal{T}$-Symmetry is not broken, then is $\left\|H_{\mathcal{P} \mathcal{T}} f\right\|=\|f\|$?

Complex Extension of Quantum Mechanics[2]

- If $\mathcal{P} \mathcal{T}$-Symmetry is not broken, then is $\left\|H_{\mathcal{P} \mathcal{T}} f\right\|=\|f\|$?
- $\langle f, g\rangle_{\mathcal{P} \mathcal{T}}=\langle f, \mathcal{P} \mathcal{T} g\rangle=\int f^{*}(x) \mathcal{P} \mathcal{T} g(x) d t=\int f^{*}(x) g^{*}(-x) d t$

Complex Extension of Quantum Mechanics[2]

- If $\mathcal{P} \mathcal{T}$-Symmetry is not broken, then is $\left\|H_{\mathcal{P} \mathcal{T}}\right\|=\|f\|$?
- $\langle f, g\rangle_{\mathcal{P} \mathcal{T}}=\langle f, \mathcal{P} \mathcal{T} g\rangle=\int f^{*}(x) \mathcal{P} \mathcal{T} g(x) d t=\int f^{*}(x) g^{*}(-x) d t$
- $\Longrightarrow \exists \phi_{n}:\left\langle\phi_{n}, \phi_{n}\right\rangle_{\mathcal{P} \mathcal{T}}=-1\left(\|\phi\|_{\mathcal{P} \mathcal{T}}=i\right)$ and $\left\langle\phi_{m}, \phi_{n}\right\rangle_{\mathcal{P} \mathcal{T}}=(-1)^{m} \delta_{n m}$ (in fact, $\Longrightarrow S U(n, n)$, not $S U(2 n)$)

Complex Extension of Quantum Mechanics[2]

- If $\mathcal{P} \mathcal{T}$-Symmetry is not broken, then is $\left\|H_{\mathcal{P} \mathcal{T}}\right\|=\|f\|$?
- $\langle f, g\rangle_{\mathcal{P} \mathcal{T}}=\langle f, \mathcal{P} \mathcal{T} g\rangle=\int f^{*}(x) \mathcal{P} \mathcal{T} g(x) d t=\int f^{*}(x) g^{*}(-x) d t$
- $\Longrightarrow \exists \phi_{n}:\left\langle\phi_{n}, \phi_{n}\right\rangle_{\mathcal{P} \mathcal{T}}=-1\left(\|\phi\|_{\mathcal{P} \mathcal{T}}=i\right)$ and $\left\langle\phi_{m}, \phi_{n}\right\rangle_{\mathcal{P} \mathcal{T}}=(-1)^{m} \delta_{n m}$ (in fact, $\Longrightarrow S U(n, n)$, not $S U(2 n)$)
- Aim: Define \mathcal{C} such that \mathcal{C} represents measurement of signature of $\langle., .\rangle_{\mathcal{P} \mathcal{T}}$.

Complex Extension of Quantum Mechanics[2]

- If $\mathcal{P} \mathcal{T}$-Symmetry is not broken, then is $\left\|H_{\mathcal{P} \mathcal{T}}\right\|=\|f\|$?
- $\langle f, g\rangle_{\mathcal{P} \mathcal{T}}=\langle f, \mathcal{P} \mathcal{T} g\rangle=\int f^{*}(x) \mathcal{P} \mathcal{T} g(x) d t=\int f^{*}(x) g^{*}(-x) d t$
- $\Longrightarrow \exists \phi_{n}:\left\langle\phi_{n}, \phi_{n}\right\rangle_{\mathcal{P} \mathcal{T}}=-1\left(\|\phi\|_{\mathcal{P} \mathcal{T}}=i\right)$ and $\left\langle\phi_{m}, \phi_{n}\right\rangle_{\mathcal{P} \mathcal{T}}=(-1)^{m} \delta_{n m}$ (in fact, $\Longrightarrow S U(n, n)$, not $S U(2 n)$)
- Aim: Define \mathcal{C} such that \mathcal{C} represents measurement of signature of $\langle., .\rangle_{\mathcal{P T}}$.
- Choice: $\mathcal{C}=e^{Q(\hat{x}, \hat{p})} \mathcal{P}$ such that $Q(\hat{x}, \hat{p})=-Q(-\hat{x},-\hat{p})$ and $[\mathcal{C}, H]=0$. Then, $\mathcal{C}^{2}=1,[\mathcal{C}, \mathcal{P}] \neq 0$ but $[\mathcal{C}, \mathcal{P} \mathcal{T}]=0$ so that $\|\phi\|_{\mathcal{C P T}}=1$

Abstract

During the recent developments of quantum theory it has been claried that the observable quantities (like energy or position) may be represented by operators Λ (with real spectra) which are manifestly non-Hermitian in a preselected "friendly" Hilbert space $H^{(\mathcal{F})}$. The consistency of these models is known to require an upgrade of the inner product, i.e., mathematically speaking, a transition $H^{(\mathcal{F})} \rightarrow H^{(\mathcal{S})}$ to another, "standard" Hilbert space. We prove that whenever we are given more than one candidate for an observable (i.e., say, two operators Λ_{0} and Λ_{1}) in advance, such an upgrade need not exist in general.

Introduction

- "There exists a subtle correspondence between the choice of the so called irreducible sets of the candidates Λ_{j} for the observables and the role played by these sets in the removal of the well known ambiguity of the assignment of the ... Hilbert space $H^{(\mathcal{F})}$ to a single observable $\Lambda_{0}{ }^{\prime \prime}$

Introduction

- "There exists a subtle correspondence between the choice of the so called irreducible sets of the candidates Λ_{j} for the observables and the role played by these sets in the removal of the well known ambiguity of the assignment of the \ldots. Hilbert space $H^{(\mathcal{F})}$ to a single observable $\Lambda_{0}{ }^{\prime \prime}$
- Entirely generic observables Λ_{0} and Λ_{1} are incompatible, if they do not commute.

Introduction

- "There exists a subtle correspondence between the choice of the so called irreducible sets of the candidates Λ_{j} for the observables and the role played by these sets in the removal of the well known ambiguity of the assignment of the \ldots. Hilbert space $H^{(\mathcal{F})}$ to a single observable $\Lambda_{0}{ }^{\prime \prime}$
- Entirely generic observables Λ_{0} and Λ_{1} are incompatible, if they do not commute.
- General approach: $H=\Theta^{-1} H^{*} \Theta$ for $\Theta=\Omega^{*} \Omega$ where $\Omega: H^{(\mathcal{F})} \longrightarrow H^{(\mathcal{T})}$ and $\Theta=\Theta\left(\Lambda_{0}, \Lambda_{1}\right)$ is the Tensor Metric, not assumed to be trivial.

Introduction

- "There exists a subtle correspondence between the choice of the so called irreducible sets of the candidates Λ_{j} for the observables and the role played by these sets in the removal of the well known ambiguity of the assignment of the \ldots. Hilbert space $H^{(\mathcal{F})}$ to a single observable $\Lambda_{0}{ }^{\prime \prime}$
- Entirely generic observables Λ_{0} and Λ_{1} are incompatible, if they do not commute.
- General approach: $H=\Theta^{-1} H^{*} \Theta$ for $\Theta=\Omega^{*} \Omega$ where $\Omega: H^{(\mathcal{F})} \longrightarrow H^{(\mathcal{T})}$ and $\Theta=\Theta\left(\Lambda_{0}, \Lambda_{1}\right)$ is the Tensor Metric, not assumed to be trivial.
- Find Ω so that $\langle f, g\rangle_{\mathcal{F}}=\langle\Omega f, \Omega g\rangle=\langle f, \Theta g\rangle$

Introduction

- "There exists a subtle correspondence between the choice of the so called irreducible sets of the candidates Λ_{j} for the observables and the role played by these sets in the removal of the well known ambiguity of the assignment of the \ldots. Hilbert space $H^{(\mathcal{F})}$ to a single observable $\Lambda_{0}{ }^{\prime \prime}$
- Entirely generic observables Λ_{0} and Λ_{1} are incompatible, if they do not commute.
- General approach: $H=\Theta^{-1} H^{*} \Theta$ for $\Theta=\Omega^{*} \Omega$ where $\Omega: H^{(\mathcal{F})} \longrightarrow H^{(\mathcal{T})}$ and $\Theta=\Theta\left(\Lambda_{0}, \Lambda_{1}\right)$ is the Tensor Metric, not assumed to be trivial.
- Find Ω so that $\langle f, g\rangle_{\mathcal{F}}=\langle\Omega f, \Omega g\rangle=\langle f, \Theta g\rangle$
- Natural restriction: $\Theta_{j}=U_{j}^{*} D_{j} U_{j}$ where U_{j} is an orthogonal matrix in the basis of the eigenvectors of an Λ_{j}

Introduction

- "There exists a subtle correspondence between the choice of the so called irreducible sets of the candidates Λ_{j} for the observables and the role played by these sets in the removal of the well known ambiguity of the assignment of the \ldots. Hilbert space $H^{(\mathcal{F})}$ to a single observable $\Lambda_{0}{ }^{\prime \prime}$
- Entirely generic observables Λ_{0} and Λ_{1} are incompatible, if they do not commute.
- General approach: $H=\Theta^{-1} H^{*} \Theta$ for $\Theta=\Omega^{*} \Omega$ where $\Omega: H^{(\mathcal{F})} \longrightarrow H^{(\mathcal{T})}$ and $\Theta=\Theta\left(\Lambda_{0}, \Lambda_{1}\right)$ is the Tensor Metric, not assumed to be trivial.
- Find Ω so that $\langle f, g\rangle_{\mathcal{F}}=\langle\Omega f, \Omega g\rangle=\langle f, \Theta g\rangle$
- Natural restriction: $\Theta_{j}=U_{j}^{*} D_{j} U_{j}$ where U_{j} is an orthogonal matrix in the basis of the eigenvectors of an Λ_{j}
- When is $\Theta_{j}=\Theta_{i}$? Obvious: $\left[\Theta_{j}, \Theta_{i}\right]=0$. Another possibility: $\Lambda_{j} \Theta_{j}=\Theta_{j} \Lambda_{j}^{*}$

Main Result

- Past approaches: let $\hat{x} \longmapsto \hat{X}, \hat{p} \longmapsto \hat{P}$ such that $\hat{a}=\frac{1}{\sqrt{2}}(\hat{x}+i \hat{p}) \longmapsto \frac{1}{\sqrt{2}}(\hat{X}+i \hat{P})$ and $\hat{a}^{\dagger}=\frac{1}{\sqrt{2}}(\hat{x}-i \hat{p}) \longmapsto \frac{1}{\sqrt{2}}(\hat{X}-i \hat{P})$ conditional to $\hat{a} \hat{a}^{\dagger}-q \hat{a}^{\dagger} \hat{a}=\left[\hat{a}, \hat{a}^{\dagger}\right]_{q}=I$. Let $q=1-\epsilon$.

Main Result

- Past approaches: let $\hat{x} \longmapsto \hat{X}, \hat{p} \longmapsto \hat{P}$ such that

$$
\hat{a}=\frac{1}{\sqrt{2}}(\hat{x}+i \hat{p}) \longmapsto \frac{1}{\sqrt{2}}(\hat{X}+i \hat{P}) \text { and }
$$

$$
\hat{a}^{\dagger}=\frac{1}{\sqrt{2}}(\hat{x}-i \hat{p}) \longmapsto \frac{1}{\sqrt{2}}(\hat{X}-i \hat{P}) \text { conditional to }
$$

$$
\hat{a} \hat{a}^{\dagger}-q \hat{a}^{\dagger} \hat{a}=\left[\hat{a}, \hat{a}^{\dagger}\right]_{q}=l . \text { Let } q=1-\epsilon
$$

- Then, $\hat{X}=\hat{x}+\frac{1}{8} \epsilon X_{1}+\mathcal{O}\left(\epsilon^{2}\right)$ with $X_{1}=\hat{x}^{3}-\hat{x} \hat{p}^{2}+i \hat{x}^{2}+i \hat{x}^{2} \hat{p}-\hat{x}+i \hat{p}^{3}+\hat{p} \hat{x} \hat{p}+\hat{p}^{2} \hat{x}$ et.c

Main Result

- Past approaches: let $\hat{x} \longmapsto \hat{X}, \hat{p} \longmapsto \hat{P}$ such that

$$
\hat{a}=\frac{1}{\sqrt{2}}(\hat{x}+i \hat{p}) \longmapsto \frac{1}{\sqrt{2}}(\hat{X}+i \hat{P}) \text { and }
$$

$$
\hat{a}^{\dagger}=\frac{1}{\sqrt{2}}(\hat{x}-i \hat{p}) \longmapsto \frac{1}{\sqrt{2}}(\hat{X}-i \hat{P}) \text { conditional to }
$$

$$
\hat{a} \hat{a}^{\dagger}-q \hat{a}^{\dagger} \hat{a}=\left[\hat{a}, \hat{a}^{\dagger}\right]_{q}=l . \text { Let } q=1-\epsilon
$$

- Then, $\hat{X}=\hat{x}+\frac{1}{8} \epsilon X_{1}+\mathcal{O}\left(\epsilon^{2}\right)$ with $X_{1}=\hat{x}^{3}-\hat{x} \hat{p}^{2}+i \hat{x}^{2}+i \hat{x}^{2} \hat{p}-\hat{x}+i \hat{p}^{3}+\hat{p} \hat{x} \hat{p}+\hat{p}^{2} \hat{x}$ et.c
- Also, $H_{q}=\hat{P}^{2}+\hat{X}^{2}=\hat{p}^{2}+\hat{x}^{2}+\frac{1}{8} \epsilon H_{1}$ with $H_{1}=2 \hat{x}^{4}-\hat{x}^{2}+3 \hat{p}^{2}-3+2 i \hat{x}^{3} \hat{p}+2 i \hat{x} \hat{p}^{3}+2 \hat{x}^{2} \hat{p}^{2}-8 i \hat{x} \hat{p}$.

Main Result

- Past approaches: let $\hat{x} \longmapsto \hat{X}, \hat{p} \longmapsto \hat{P}$ such that

$$
\hat{a}=\frac{1}{\sqrt{2}}(\hat{x}+i \hat{p}) \longmapsto \frac{1}{\sqrt{2}}(\hat{X}+i \hat{P}) \text { and }
$$

$$
\hat{a}^{\dagger}=\frac{1}{\sqrt{2}}(\hat{x}-i \hat{p}) \longmapsto \frac{1}{\sqrt{2}}(\hat{X}-i \hat{P}) \text { conditional to }
$$

$$
\hat{a} \hat{a}^{\dagger}-q \hat{a}^{\dagger} \hat{a}=\left[\hat{a}, \hat{a}^{\dagger}\right]_{q}=l . \text { Let } q=1-\epsilon
$$

- Then, $\hat{X}=\hat{x}+\frac{1}{8} \epsilon X_{1}+\mathcal{O}\left(\epsilon^{2}\right)$ with $X_{1}=\hat{x}^{3}-\hat{x} \hat{p}^{2}+i \hat{x}^{2}+i \hat{x}^{2} \hat{p}-\hat{x}+i \hat{p}^{3}+\hat{p} \hat{x} \hat{p}+\hat{p}^{2} \hat{x}$ et.c
- Also, $H_{q}=\hat{P}^{2}+\hat{X}^{2}=\hat{p}^{2}+\hat{x}^{2}+\frac{1}{8} \epsilon H_{1}$ with $H_{1}=2 \hat{x}^{4}-\hat{x}^{2}+3 \hat{p}^{2}-3+2 i \hat{x}^{3} \hat{p}+2 i \hat{x} \hat{p}^{3}+2 \hat{x}^{2} \hat{p}^{2}-8 i \hat{x} \hat{p}$.
- $H_{1} \neq H_{1}^{*}$ and $X_{1} \neq X_{1}^{*}$

References I

(T.M. Bender and S. Boettcher, Real Spectra in Non-Hermitian Hamiltonians Having $\mathcal{P} \mathcal{T}$-Symmetry. Phys. Rev. Lett. 80, 5243 (1998).

目 C. M. Bender, D. C. Brody, and H. F. Jones, Complex Extension of Quantum Mechanics, Phys. Rev. Lett. 89, 270401 (2002).

嗇 C. M. Bender, Introduction to $\mathcal{P} \mathcal{T}$-symmetric quantum theory, Contemp. Phys. 46, 277-292 (2005). DOI: 10.1080/00107500072632
R G. Hall, Symmetries and Curvature Structure in General Relativity (World Scientific Lecture Notes in Physics). Singapore: World Scientific Pub. Co. ISBN 981-02-1051-5 (2004)

